Fonction exponentielle

I - Définition et propriétés :

1 - Définition:

Il existe une unique fonction f définie et dérivable sur \mathbb{R} telle que f'(x) = f(x) et f(0) = 1. Cette fonction est appelée fonction exponentielle et se note $\exp(x)$ ou e^x .

On peut résumer par :

$$\begin{array}{cccc}
\exp & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \longmapsto & \exp(x)
\end{array}$$

où $\exp(0) = 1$ et $\forall x \in \mathbb{R}$, $(\exp)'(x) = \exp(x)$.

2 - Propriétés :

- 1. La fonction exponentielle est strictement positive sur \mathbb{R} .
- 2. La fonction exponentielle est strictement croissante sur \mathbb{R} .

II - Étude de la fonction exponentielle

Soit $\overline{f(x)} = \exp(x) = e^x$ définie sur \mathbb{R} et f'(x) sa dérivée.

1 - Les limites :

$$1. \lim_{x \to -\infty} x e^x = 0$$

$$2. \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

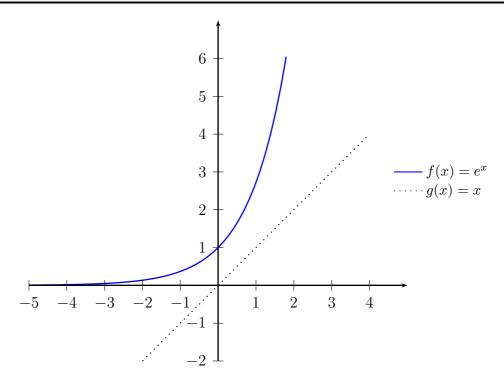
$$3. \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

2 - La dérivée de la fonction $x \mapsto \exp[u(x)] = e^x$: Soit u un fonction dérivable sur un intervalle I de \mathbb{R} .

Alors, $f(x) = e^{u(x)}$ admet comme dérivée la fonction : $f'(x) = u'(x)e^{u(x)}$.

En particulier, si $f(x) = e^x$, alors $f'(x) = e^x$.

3 - Tableau de variation :


x	$-\infty$	$+\infty$
f'(x)	+	
f(x)	0	$+\infty$

x	$-\infty$		$+\infty$
f(x)		+	

5 - Représentation graphique :

Propriété:

On dit que l'axe des abscisses est asymptote horizontale en $-\infty$ à la courbe de la fonction exponentielle pour signifier que la limite de e^x en $-\infty$ est égale à 0.

6 - Propriétés :

Soit \overline{a} et $\overline{b} \in \mathbb{R}$. On a les équivalences suivantes :

1.
$$e^a = e^b \iff a = b$$
.

$$2. e^a < e^b \iff a < b.$$

7 - Propriété algébrique

Si a et b sont deux réels et $n \in \mathbb{N}$. On a alors :

1.
$$e^0 = 1$$

$$3. e^{a-b} = \frac{e^a}{e^b};$$

$$5. (e^a)^n = e^{a \times n};$$

$$2. e^{a+b} = e^a \times e^b;$$

4.
$$e^{-a} = \frac{1}{e^a}$$
;

$$6. \ \sqrt{e^a} = e^{\frac{a}{2}}.$$