Fonction logarithme népérien

I - Définition et propriétés :

1 - Définition :

Pour tout réel x > 0, l'équation $e^y = x$, d'inconnue réelle y admet une unique solution.

La fonction qui à x associe cette solution est appelée fonction logarithme népérien. On a ainsi : $y = \ln x$

On peut résumer par :

$$\begin{array}{cccc} \ln & : &]0 \; ; \; +\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln x \end{array}$$

$$\forall x > 0, \quad e^y = x \Longleftrightarrow y = \ln x$$

2 - Propriétés :

1.
$$\forall x > 0, \ e^{\ln x} = x$$

2.
$$\forall x \in \mathbb{R}, \ln(e^x) = x$$
.

3 - Propriétés:

- 1. La fonction $f(x) = \ln x$ est continue et dérivable sur]0; $+\infty[$ et $\forall x > 0$, $f'(x) = \frac{1}{x}$.
- 2. La fonction $f(x) = \ln x$ est strictement croissante sur]0; $+\infty[$.

II - Étude de la fonction logarithme népérien

Soit $f(x) = \ln x$ définie sur $[0; +\infty[$ et f'(x) sa dérivée.

1 - <u>Les limites</u>:

1.
$$\lim_{\substack{x \to 0 \\ x > 0}} x \ln x = 0$$

3.
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$2. \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

2 - La dérivée de la fonction $x \longmapsto \ln [u(x)]$: Soit u un fonction dérivable et strictement positive sur un intervalle I de \mathbb{R} .

Alors, $f(x) = \ln[u(x)]$ a pour dérivée la fonction : $f'(x) = \frac{u'(x)}{u(x)}$.

En particulier, si $f(x) = \ln x$, alors $f'(x) = \frac{1}{x}$.

3 - <u>Tableau de variation</u>:

x	0	1 +∞
f'(x)		+
f(x)		$-\infty$ $+\infty$

4 - <u>Tabl</u>eau de signe :

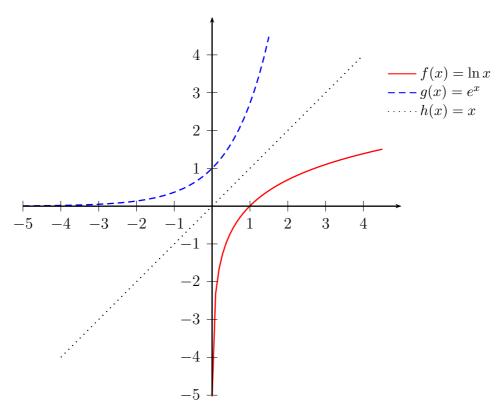
x	0		1		$+\infty$
f(x)		_	0	+	

5 - Représentation graphique :

Propriété:

Les courbes représentatives des fonctions exponentielles et logarithme népérien sont symétriques par rapport à la droite d'équation y = x (la première bissectrice).

Remarque: On dit que les fonctions ln et exp sont réciproques l'une de l'autre.



6 - Propriétés:

Soit a et $b \in \mathbb{R}_+^*$. On a les équivalences suivantes :

1.
$$\ln a = \ln b \iff a = b$$
.

2.
$$\ln a < \ln b \iff a < b$$
.

En particulier, on a:

1.
$$\ln a < 0 \iff 0 < a < 1$$
. 2. $\ln a = 0 \iff a = 1$. 3. $\ln a > 0 \iff a > 1$.

2.
$$\ln a = 0 \iff a = 1$$
.

3.
$$\ln a > 0 \iff a > 1$$

7 - Propriété algébrique Pour tout réel $a>0,\ b>0$ et $k\in\mathbb{Z},$ on a :

1.
$$\ln(a \times b) = \ln(a) + \ln(b)$$
;

3.
$$\ln\left(\frac{1}{a}\right) = -\ln(a)$$
;

4.
$$\ln(a^k) = k \times \ln(a)$$
;

2.
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$
;

5.
$$\ln(\sqrt{a}) = \frac{1}{2} \times \ln(a).$$

III - Le logarithme décimale

<u>Définition</u>:

La fonction logarithme décimale, notée log, est définie sur]0; $+\infty[$ par : $\log x = \frac{\ln x}{\ln 10}$.

En particulier, $\log 10 = \frac{\ln 10}{\ln 10} = 1$

Remarque: Les fonctions logarithme décimale et logarithme népérien ont les mêmes propriétés.